Altair provides all building blocks to close the loop between development and operation converging simulation and field data enabling AI-driven decision making.

工业机械

所有机械制造项目的首要目标就是实现高品质产品的完美运行生产。使用精确的虚拟样机,可在开发过程中更早地实现无缝生产,以帮助评估并提高产品盈利能力。

机器的复杂程度与日俱增,这就需要在产品线开发和客户项目实施中进行积极的技术风险管理。可以通过多物理场仿真基于模型的开发来实现,从而对意外情况的表象及根源获得更深入的了解。Altair 集成化产品和工艺仿真工具可从不同角度全面观察整个情况,以确保更早实现完美运行生产。

虚拟样机

精确的虚拟样机可更深入地了解工业机器的结构、机理和内部元件,同时也为人工智能驱动的决策提供了基础。

当仿真与测试数据高度相关时,可以通过数值优化手段加速机器设备的开发,以提高运行效率、减少振动并改善机器的动力学特性。

通过将 M-CAD、E-CAD 和 PLC 相互关联,系统仿真可以解决越来越多的复杂机器制造挑战。

Are you weld designs in compliance with FKM directives?

Learn More

启用虚拟调试

各种工具、方法、语义和实现,使结构工程师、软件工程师和测试部门之间的信息交流变得复杂。将研发准则和目的相结合来驱动仿真,系统开发解决方案 Altair Activate™ 通过功能模拟接口(FMI)标准与PLC环境连接。将控制顺序与机器的实际行为相结合,可以实现虚拟调试,减少客户设备的时间投资。

消除振动并改善动力学性能

多体仿真能分析机械元件的详细行为并创建虚拟样机,这为数值优化提供了基础,使得减重或减振目标得以实现。通过多体仿真,可以更快地实现工艺精度,提高机器和生产线的生产效率。详细的多体仿真可用于评估寿命和疲劳,并减少由材料疲劳导致的维护

Altair tools allow integrated mechatronics simulation enabling automatic tool path error adjustments and create the statistical dataset to feed predictive maintenance applications. Self-learning, automatic path error correction, improves the part and process quality, to increases machine productivity and the reduces tool wear.

通过机器学习和 AI 优化流程

可以通过编程使机器具有自我意识,学会自我优化。机器制造商便能够实现自动路径校正,避免因工件重量变化、制造容差差异或系统机械老化引起的路径误差。自主学习、自动路径误差校正可提高零件和工艺的质量,提高机器生产率,并减轻设备磨损。对于速度、精度和表面光洁度等方面的要求,可通过集成式机电仿真的自动参数调整进行控制。结合控制系统进行整体系统仿真,可以进行因果分析,减少控制参数的适应时间,并为机器学习奠定基础。


Reduced machine noise increases the operator efficiency.

降低机器噪音

针对性仿真可以指出修正方法,降低生产设施的噪声水平。结构优化能找出更有效益的替代设计方案、精确的多体仿真及实现声学优化。通过针对性的减重及质量阻尼,制造商可减少振动并找到有效措施来减少噪音污染。

Consequent lightweight design throughout the machine enables the reduction of production, processing, and maintenance costs.

减轻机器零件的重量

整机一致化的轻量化设计有助于减少生产、加工和维护成本,同时还可以缩短生产和闲置时间。此外,轻量化设备在调试过程中,还表现出运载至客户所需时间短,现场安装迅速的优势。源自 Altair Inspire™Altair OptiStruct™ 的轻量化设计,能够满足多种制造工艺,包括结构焊接、注塑成型、钣金成型、铸造、铣削、3D 打印等。

特色资源

Improving Speed and Precision of a CNC Milling Machine with Holistic System Simulation

The presentation outlines a solution strategy for how a digital twin of a milling machine is solving mechatronic challenges. To improve cycle times, accuracy, and addressing vibration problems a holistic system simulation serves as the basis for optimization. The efficient modeling of the real system behavior with flexibilities, contacts, gaps, friction, nonlinearities in the drives (incl. saturation effects of motors), power electronics in combination with the control system is the basis for efficient controller design and optimization of the control parameters. The dynamic interaction of multiple system components combining 3D finite elements analysis multi-body dynamics and control system helps avoiding Tracking-, drag-, positioning errors rebound, and accumulation effects.  

Use Cases

ABB

To support the use of simulation tools in this endeavor, ABB in Spain enlisted the help of Altair ProductDesign's regional team, thanks to the company's experience in utilizing simulation tools to solve engineering challenges in the robotics industry. The project centered on improving the fatigue performance of a Twin Robot Xbar (TRX), one of ABB’s robotic part transfer systems that moves components between manufacturing stations.

Customer Stories

Digital Twin Design Process for Efficient Development and Operation of a Customized Robot

In a joint project MX3D, ABB, and Altair demonstrated how a 3D printed robot can be improved by using a digital twin process to achieve more precise positioning.

White Papers

Optimizing SCARA Robot

仿真驱动设计带来了 3D 打印的轻量化气动机器人。

Blog
查看所有资源